Decompositions of Ideal Topological Sets

Amala Priya. A

Research Scholar, Department of Mathematics, P. M. T College, Usilampatti. Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India.

ABSTRACT: In this paper, some relationships of α-I-open sets, pre-I-open sets, semi-I-open sets, strongly β-I-open sets and b-I-open sets in ideal topological spaces are discussed. Furthermore, decompositions of ideal topological sets are established.

Keywords:

 α -open set, I- α lc-set, I-slc-set, λ -closed set.

1. Introduction

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

- 1. $A \in I$ and $B \subseteq A \Rightarrow B \in I$ and
- 2. $A \in I$ and $B \in I \Rightarrow A \cup B \in I$ [8].

Given a topological space (X, τ) with an ideal I on X and if $\wp(X)$ is the set of all subsets of X, a set operator (.)*: $\wp(X) \rightarrow \wp(X)$, called a local function of A with respect to τ and I, is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X \mid U \cap A \notin I\}$, called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [7]. When there is no chance for confusion, we will simply write A* for A* (I, τ) and τ^* for $\tau^*(I, \tau)$. int*(A) will denote the interior of A in (X, τ^*) and (X, τ, I) is called an ideal topological space or an ideal space. A subset A of an ideal topological space (X, τ, I) is called *-closed if $A^* \subseteq A$. In this paper, we introduce new classes of sets by using λ -I-closed sets in ideal topological spaces and study their basic properties; and their connections with other types ofideal topological sets. Moreover, some new decompositions of ideal topological sets are obtained.

2. Preliminaries

Definition 2.1 A subset A of a space (X, τ) is called

1. α -open [12] if $A \subseteq int(cl(int(A)))$;

- 2. preopen [11] if $A \subseteq int(cl(A))$;
- 3. semi-open [9] if $A \subseteq cl(int(A))$;
- 4. β -open [1] if $A \subseteq cl(int(cl(A)));$
- 5. b-open [2] if $A \subseteq int(cl(A)) \cup cl(int(A))$.

The family of all α -open (resp. preopen, semi-open, β -open, b-open) sets of X is denoted by $\alpha O(X)$ (resp.

PO(X), SO(X), β O(X), BO(X)).

Definition 2.2 A subset A of a space (X, τ) is called

- 1. a Λ -set if $A = A^{\Lambda}$ where $A^{\Lambda} = \bigcap \{G: A \subseteq G, G \in \tau\}[10]$.
- 2. a Λ_{α} -set if $A = \Lambda_{\alpha}(A)$ where $\Lambda_{\alpha}(A) = \cap \{G: A \subseteq G, G \in \alpha O(X)\}$ [5].
- 3. a Λ_s -set if $A = \Lambda_s(A)$ where $\Lambda_s(A) = \bigcap \{G: A \subseteq G, G \in SO(X)\}$ [4].
- 4. a Λ_p -set if $A = \Lambda_p(A)$ where $\Lambda_p(A) = \bigcap \{G: A \subseteq G, G \in PO(X)\}$ [4].
- 5. a Λ_{β} -set if $A = \Lambda_{\beta}(A)$ where $\Lambda_{\beta}(A) = \bigcap \{G: A \subseteq G, G \in \beta O(X)\}$ [13].
- 6. a Λ_b -set if $A = \Lambda_b(A)$ where $\Lambda_b(A) = \bigcap \{ G: A \subseteq G, G \in BO(X) \} [6]$.

Definition 2.3 A subset A of a topological space (X, τ) is called λ -closed [3] if $A = L \cap F$, where L is a Λ -set and F is closed.

3. Characterizations of generalized I-closed sets

Definition 3.1 A subset A of an ideal topological space (X, τ, I) is called

- 1. λ -I- α g*-closed if A = L \cap F, where L is a Λ_{α} -set and F is *-closed.
- 2. λ -I-sg*-closed if A = L \cap F, where L is a Λ_s -set and F is *-closed.
- 3. λ -I-pg*-closed if A = L \cap F, where L is a Λ_p -set and F is *-closed.
- 4. λ -I- β g*-closed if A = L \cap F, where L is a Λ_{β} -set and F is *-closed.
- 5. λ -I-bg*-closed if A = L \cap F, where L is a Λ_b -set and F is *-closed.

Definition 3.2 A subset A of an ideal topological space (X, τ, I) is called

- 1. an I- α lc-set if A = L \cap F where L is α -open and F is *-closed.
- 2. an I-slc-set if $A = L \cap F$ where L is semi-open and F is *-closed.

Definition 3.3 A subset A of an ideal topological space (X, τ, I) is called

- 1. $I_{\alpha g^*}$ -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is α -open.
- 2. I_{sg^*} -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Lemma 3.4 Every Λ_{α} -set (resp. Λ_s -set, Λ_p -set, Λ_{β} -set, Λ_b -set) is λ -I- α g*- closed (resp. λ -I-sg*-closed,

 λ -I-pg*-closed, λ -I- β g*-closed, λ -I-bg*-closed)but not conversely.

Example 3.5 Let $X = \{a, b, c\}$, $\tau = \{\theta, X, \{c\}, \{a, c\}, \{b, c\}\}$ and $I = \{\theta\}$. Then $\{a\}$ is λ -I- α g*-closed but not a Λ_{α} -set.

Example 3.6 In Example 3.5, $\{a\}$ is λ -I-sg*-closed but not a Λ_s -set.

Example 3.7 In Example 3.5, $\{a\}$ is λ -I-pg*-closed but not a Λ_p -set.

Example 3.8 In Example 3.5, $\{a\}$ is λ -I- βg^* -closed but not a Λ_β -set.

Example 3.9 In Example 3.5, $\{a\}$ is λ -I-bg*-closed but not a Λ_b -set.

Lemma 3.10 1. A subset $A \subseteq (X, \tau, I)$ is $I\alpha g^*$ -closed if and only if $cl^*(A) \subseteq A\alpha(A)$.

2. A subset $A \subseteq (X, \tau, I)$ is I sg* -closed if and only if $cl^*(A) \subseteq As(A)$.

Lemma 3.11 For a subset A of an ideal topological space (X, τ, I) , the following conditions are equivalent.

- 1. A is λ -I- α g*-closed.
- 2. $A = L \cap cl^*(A)$ where L is a $\Lambda \alpha$ -set.
- 3. $A = \Lambda \alpha (A) \cap cl^*(A)$.

Theorem 3.12 For a subset A of an ideal topological space (X, τ , I), the following conditions are equivalent.

- 1. (i) A is *-closed.
 - (*ii*) A is I α g*-closed and an I- α lc-set.
 - (*iii*) A is I α g*-closed and λ -I- α g*-closed.
- 2. (i) A is *-closed.
 - (*ii*) A is Isg*-closed and an I-slc-set.
 - (*iii*) A is Isg*-closed and λ -I-sg*-closed.

Remark 3.13 The following examples show that the concepts of

- 1. $I_{\alpha g}^*$ -closed sets and I- α lc-sets are independent of each other.
- 2. $I_{\alpha g}^*$ -closed sets and λ -I- α g*-closed sets are independent of each other.
- 3. I_{sg}^* -closed sets and I-slc-sets are independent of each other.
- 4. I_{sg}^* -closed sets and λ -I-sg*-closed sets are independent of each other.

Example 3.14 Let $X = \{a, b, c, d\}, \tau = \{\theta, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\theta\}$. Then

- 1. {b, d} is $I_{\alpha g}^*$ -closed but not an I- α lc-set.
- 2. $\{a\}$ is an I- α lc-set but not I α g*-closed.
- **Example 3.15** 1. In Example 3.14, $\{b, d\}$ is $I_{\alpha g}^*$ -closed but not λ -I- αg^* closed.
 - 2. In Example 3.14, {a} is λ -I- α g*-closed but not I_{ag}*-closed.
- **Example 3.16** 1. In Example 3.14, $\{b, d\}$ is I_{sg}^* -closed but not an I-slc-set.
 - 2. In Example 3.14, {a} is an I-slc-set but not I_{sg}*-closed.
- **Example 3.17** 1. In Example 3.14, $\{b, d\}$ is L_g^* -closed but not λ -I-sg*-closed.
 - 2. In Example 3.14, {a} is λ -I-sg*-closed but not I_{sg}*-closed.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assuit Univ. 12(1983), 77-90.
- [2] D. Andrijevic, On b-open sets, Mat. Vesnik, 48(1996), 59-64.
- [3] F. G. Arenas, J. Dontchev and M. Ganster, On λ -sets and the dual of generalized continuity, Questions Answers Gen. Topology, 15(1) (1997), 3-13.
- [4] M. Caldas and J. Dontchev, $G.\Lambda_s$ -sets and $G. V_s$ -sets, Mem. Fac. Sci. Kochi. Univer. (Math). 21(2000), 21-30.
- [5] M. Caldas, D. N. Georgiou and S. Jafari, Study of (Λ , α)-closed sets and the related notions in topological spaces, Bull. Malay. Math. Sci. Soc. (2), 30(1)(2007),23-36.
- [6] M. Caldas, S. Jafari and T. Noiri, On Λ_b -sets and the associated topology $\tau^{\Lambda b}$, Acta Math. Hungar. 110(4)(2006), 337-345.

- [7] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
- [8] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] H. Maki, Generalized Λ-sets and the associated closure operator in special issuein commemoration of Prof. Kazusada IKEDA's Retirement, (1986), 139-146.
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [12] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961-970.
- [13] T. Noiri and E. Hatir, Λ_{sp} -sets and some weak separation axioms, Acta Math.

Hungar. 103(3) (2004), 225-232.